If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+48x-30=0
a = 24; b = 48; c = -30;
Δ = b2-4ac
Δ = 482-4·24·(-30)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-72}{2*24}=\frac{-120}{48} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+72}{2*24}=\frac{24}{48} =1/2 $
| -3y=10=-14 | | |6x+4|/4=2 | | -6x+15=10-x | | 79=5x+6(x+15) | | 2p-8=3 | | p-4/2=3 | | -151=-5x-6(7x-14 | | 14y+14=70 | | 170+0.25x=360 | | 45=x/5+15 | | 8x16=48 | | 4(025+x)=5 | | 3(2x+1)=-2(-2x-3) | | 2x+-8=6x+14 | | x+0.06X=5 | | x+0.6X=5 | | 55-7x=17+12 | | 2(3)+2x=2 | | x=(1+x) | | 9−2d÷4=1−d | | 5x−7=3x+16 | | 15-x=2(x+30 | | 15-x=2(x+3))) | | 9−2d4=1−d | | 8x+16=12x-6 | | 2(5x-6=3(3x+1) | | 18x²-39x=0 | | x/10+10=-3 | | -0.3=16.74x | | 82=6+4n-4 | | 256y2-32y+1=0 | | t=4t+1 |